An Ensemble Method based on Particle of Swarm for the Reduction of Noise, Outlier and Core Point
نویسندگان
چکیده
The majority voting and accurate prediction of classification algorithm in data mining are challenging task for data classification. For the improvement of data classification used different classifier along with another classifier in a manner of ensemble process. Ensemble process increase the classification ratio of classification algorithm, now such par diagram of classification algorithm is called ensemble classifier. Ensemble learning is a technique to improve the performance and accuracy of classification and predication of machine learning algorithm. Many researchers proposed a model for ensemble classifier for merging a different classification algorithm, but the performance of ensemble algorithm suffered from problem of outlier, noise and core point problem of data from features selection process. In this paper we combined core, outlier and noise data (COB) for features selection process for ensemble model. The process of best feature selection with appropriate classifier used particle of swarm optimization. Empirical results with UCI data set prediction on Ecoil and glass dataset indicate that the proposed COB model optimization algorithm can help to improve accuracy and classification.
منابع مشابه
An effective approach for damage identification in beam-like structures based on modal flexibility curvature and particle swarm optimization
In this paper, a computationally simple approach for damage localization and quantification in beam-like structures is proposed. This method is based on using modal flexibility curvature (MFC) and particle swarm optimization (PSO) algorithm. Analytical studies in the literature have shown that changes in the modal flexibility curvature can be considered as a sensitive and suitable criterion for...
متن کاملA Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کامل